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If a bistable system is brought closer to the bifurcation point atA=Ac, the rate of noise-activated escape to
the other stable equilibrium increases as lnk~−uA−Acu3/2. Recently, Dykman, Golding, and Ryvkine derived
that upon the addition of an oscillating force, the exponent equals 2 in an intermediate-frequency regimefPhys.
Rev. Lett. 92, 080602s2004d; Phys. Rev. E69, 061102s2004dg. In this paper we study the critical exponents
near a bifurcation point for an analytically solvable case; that of a piecewise linear well with an imposed
dichotomous fluctuation. It is shown how an exponent 2 emerges when a parameter is changed to move a
system from nonadiabaticity to adiabaticity. It is, furthermore, shown that the power law breaks down for low
barriers. Finally, it is explained why fundamental differences occur between smooth and piecewise linear
setups.
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I. INTRODUCTION

Bistability is a frequently occurring phenomenon through-
out nature. A huge body of literature has been devoted to the
theoretical study of bistability and many authoritative text-
books carry a chapter on this topicf1,2g.

Figure 1sad shows an arbitrary, generic bifurcation curve.
Along the vertical dotted line the energy profile looks like
Fig. 1sbd: xs1

andxs2
are the stable fixed points, andxu is the

unstable fixed point. In order for the system to cross over
from xs1

to xs2
, an activation barrier of heightE has to be

mounted. If the dotted line is brought further to the right, the
critical valueAc is approached. AtA=Ac, the pointsxs1

and
xu merge, and the system is no longer bistable.

WhenA comes closer toAc, i.e., Ac−A=dA→0, the bar-
rier can become sufficiently small for noise to be able to
induce a barrier crossing. Particularly in a microscopically
small system, the barrier heightE may be only a fewkBT’s
high swherekB is the Boltzmann constant andT is the abso-
lute temperature;kBT is then the average amount of energy in
Brownian motiond. The escape ratek over a barrier of height
E follows the proportionalityk~expf−E/kBTg. In the re-
mainder of this paper, I will takekBT as the unit of energy, so
k~expf−Eg. We will work in the overdamped realm and the
diffusion coefficient will be scaled toD=1. Because of Ein-
stein’s fluctuation-dissipation theorem, i.e.,b=kBT/D, this
implies b=1 for the coefficient of friction.

A bistable system that is miniaturized to a nanometer
scale is going to be more susceptible tokBT-induced
switchovers. This actually sets a soon-to-be-reached limit to
the size to which computer hardware can be shrunkf3g.

In many contexts in which bistability occurs, researchers
have tried to derive and measure at what rate noise-induced
escape from a stable state occurs. Already in the 1970s, and
working in the context of Josephson junctions, Kurkijärvi
derived that asdA→0, the activation energy goes to zero as
E~ sdAd3/2 f4g. This means that the noise-induced escape rate
k out of xs1

follows ln k~−sdAd3/2. Below I will first show a
short, but general, derivation of this critical exponent of 3/2.

In a sufficiently small neighborhood around the bifurca-
tion point A=Ac, the bifurcation curve approaches a pa-

rabola, i.e, there is a quadratic dependencesxs1
−xud2~dA

fcf. Fig. 1sadg. We thus havesxs1
−xud~ÎdA. Figure 2sad

shows how the quadratic situation aroundA=Ac in the bifur-
cation diagram translates into a cubic energy profileflike
Esxd<−x3+x2g in the neighborhood aroundxs1

and xu. The
force due to this profile equalsFsxd=−sd/dxdEsxd and is
again quadraticfFig. 2sbdg. Obviously, the force driving a
particle fromxu back toxs1

is largest at the midpoint between
xu andxs1

, i.e., at the bottom of the parabola in Fig. 2sbd. For

FIG. 1. sad A generic bifurcation curve for a bistable system
where the solid part of the curve indicates a stable attractor and the
dashed part of the curve indicates the unstable repellor. AtA=Ac

there is a bifurcation point.sbd The energy profile along the dotted
vertical line of partsad.
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a quadratic profile, this maximum force is proportional to
dA. The energy that has to be overcome for a barrier crossing
can be derived asE=−exs1

xuFdx. The area that is enclosed by a

parabolafsxd=bx2−a swherea.0 andb.0d and thex axis
runs fromx=−Îa/b to x=Îa/b and equals 4a3/2/ s3bd. Iden-
tifying a with dA, it is obvious that the activation energy is
proportional to sdAd3/2. We thus find for the escape rate
ln k~−sdAd3/2.

II. THE MODULATED BARRIER

What if an oscillating or fluctuating force is added to the
setup of Fig. 2? Such an addition leads to a varying height of
the activation barrier. Dykman, Golding, and Ryvkine de-
rived that the critical exponent equals 3/2 in the limits of
high and low frequency. But, surprisingly, they found an in-
termediate regime where the exponent equals 2f5,6g. The
derivation of Dykman, Golding, and Ryvkine involves a
mathematically intricate asymptotic analysis. Below I will
present simpler arguments in the context of a related setup. A
piecewise linear wellsFig. 3d with a Markovian dichotomous
fluctuation allows for analytical derivation of the escape rate.
The two cases, i.e., piecewise linear with imposed fluctuation
sthis paperd, and smooth with imposed oscillationsRefs.
f5,6gd, exhibit a similar decrease of the escape rate when the
imposed modulation is speeded up from the adiabatic regime
to the nonadiabatic regime. This is not surprising: introduc-
ing corners in systems with diffusion is generally of little
consequence as diffusion tends to “smooth out” corners.
However, in later sections of this paper we will see that
fundamental differences arise between smooth and piece-
wise linear when it comes to the behavior of their critical
exponents.

In the low-frequency regime, escape over the barrier oc-
curs before there is any significant variation of the barrier
profile. Let tsEd be the mean first passage time over a sta-
tionary barrier of heightE. The eventual mean first passage
time t over the modulated barrier is obtained by averaging
the tsEd’s over all barrier heights. In case of an oscillation
we thus havet=s1/Tdet=0

T tsEddt~et=0
T expfEstdgdt, whereT

is the period of the oscillation. For a fluctuation between a
finite number of barrier heights we gett~oifexpsEidgwi,
wherewi represents the average fraction of time spent in the
ith state.t goes up exponentially with the barrier heightE.
So, generally,t will be dominated by the highest values ofE,
i.e.,t<C expfEmaxg with C being a constant.Emaxscales like
sdAd3/2. ln t will therefore scale likesdAd3/2. For the escape
rate, we havek=1/t ssee Ref.f7g for a rigorous derivation of
thisd. We thus eventually still get lnk~−sdAd3/2 in the low-
frequency regime. This approximation applies when the
periodT of the oscillation or fluctuation is much larger than
the escape timetescover the barrier at maximum height, i.e.,
T@ tesc.

When a potential well as in Fig. 2sad changes shape, it
takes time for a population of Brownian particles to redis-
tribute and attain a new Boltzmann equilibrium. So there is
an “adjustment” timetadj for the escape rate when the energy
profile changes. Thehigh-frequency regimeoccurs when the
imposed fluctuation or oscillation is so fast that the escape
rate out of the well can never adjust to the shape of the
potential at a particular instant. Instead, the population of
Brownian particles will simply “feel” and adjust to the aver-
age potential. We gett~expkEl and thus lnk~−sdAd3/2 for
the escape rate ifT! tadj.

The intermediate-frequency regimeoccurs when the pe-
riod of the imposed oscillation or fluctuation is in between
the two characteristic time scalestadj and tesc, i.e., tadj,T
, tesc. In the low-frequency regimesT. tescd escape took
place before any appreciable change in barrier height oc-
curred. We, therefore, had to integrate the escape time over
the distribution of barrier heights to obtain the average es-
cape time. In the intermediate-frequency regime we face the
reverse situation: the barrier height now changes much
faster than the escape timetesc. But the change of the
barrier height is still slow enough for the system to remain
adiabatic. So eventually we have a variable escape rateksEd.

FIG. 2. sad A part of the energy profile depicted in Fig. 1sbd. If
the bifurcation curve is quadratic in a neigborhood aroundA=Ac,
wheredA= uA−Acu is small, then the distance betweenxs1

andxu is
proportional toÎsdAd, the height of the activation barrier is propor-
tional to sdAd3/2, and sbd the maximal force driving a particle to-
wardsxs1

scales likedA.

FIG. 3. A piecewise linear setup with one straight segment be-
tween a reflecting and an absorbing barrier. This profile mimics the
differentiable energy profile in Fig. 2sad. For this piecewise linear
profile, a Brownian particle’s mean first passage timet over the
barrier can be analytically evaluated. Analytic evaluation is also
possible when the barrier fluctuates betweenE+ andE−.
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We obtain the average escape ratek over the modulated bar-
rier by integrating ksEd over the distribution of barrier
heights: k=s1/Tdet=0

T kstddt. As k~expf−Eg, we have k
~ s1/Tdet=0

T expf−Estdgdt. Because of the minus sign, it is
now the minimum barrier height that will dominate. We thus
getk<C expf−Eming for the entire modulated system. It is in
this intermediate-frequency regime that the escape rate is
highest. Again we expect a critical exponent of 3/2. This
result hinges onk~expf−Eg and thus requires thatEmin is
larger than a fewkT.

III. THE PIECEWISE LINEAR CASE

Setups like the one in Fig. 2sad can be well approximated
by a piecewise linear setup as in Fig. 3. The piecewise lin-
earity introduces corners. However, for problems involving
diffusion, the introduction of corners does not generally lead
to qualitatively different behavior. The setup of Fig. 3 allows
for the analytical evaluation of the mean first passage timet
over the barrier for a particle that is inx=0 att=0. The mean
first passage time isf8–10g

t =
eE − 1 −E

E2 L2. s1d

A delta-function-like distribution atx=0 will rapidly evolve
towards a Boltzmann equilibrium inside the well. It is only
with such a stationary equilibrium distribution inside the
well that there is a constant escape ratek. With an equilib-
rium distribution inside the well the escape rate can be de-
rived to bef11,12g

k =
E2s1 − e−Ed

eE − 2E − e−EL−2. s2d

This formula also shows how lnk~−E actually loses validity
whenE gets too close to unitysi.e., whenE gets too close to
the noisebandd.

To study the escape over a modulated barrier, we let the
barrier height fluctuate betweenE+=E0+DE and E−=E0
−DE. In each of these two states there is a constant rateg,
the flipping rate, at which transition to the other state occurs.
So the average dwelling time in each state is 1/g. As the
initial condition we again takex=0 at t=0, and an equal
distribution over the two barrier heights, i.e.,PsE+d=PsE−d
=1/2 att=0. The resulting system still allows for analytical
evaluation of the mean first passage timet f8–10g. Figure
4sad shows log10 t as a function of log10 g. The four curves
are for different values of the parametersE0, DE, andL ssee
belowd. Each of the four curves exhibits an intermediate-
frequency plateauswhere tadj,1/g, tescd where the mean
first passage timet is minimal. In 1993, Doering and Gadoua
discovered this plateau and they termed the enhanced escape
“resonant activation”f9g. In the resonant activation regime,
the Brownian particles in the well can actually “take advan-
tage” of an oscillation or fluctuation. In the high- or low-
frequency regime, escape is equally likely over theE+ andE−
barrier. But at resonant activation, the dwelling time is short
enough so no escape occurs from theE+ well and long
enough for adjustment to occur on theE− profile and have an
enhanced escape rate for some time.

Next we will study the transition from the nonadiabatic
high-frequency regime to the adiabatic intermediate-
frequency regime. On the average potential we have for
the normalized probability distributionrsxd=sE0/Ldexp
f−E0x/Lg. Here a small termsorder expf−E0gd in the normal-
ization factor has been neglected. For this Boltzmann distri-
bution, the deterministic force towardsx=0 is balanced out
by a diffusive force towardsx=L. When the barrier flips
down toE−, immediately after the flipsbefore adiabatic ad-
justmentd, there is a net force ofsE0−E−d /L pushing the
entire Boltzmann distribution towardsx=L. Since the coef-
ficient of friction b equals unity, the speed with which the
distribution moves towardsx=L also equalssE0−E−d /L. The
average time in theE− state equals 1/g. If 1 / g is short
enough for the distribution not to change shape appreciably,
the fraction of the distribution betweenx=L−sE0

−E−d / sgLd and x=L will be “pushed over the edge,” i.e.,
absorbed atx=L. We call this fractionDr and we find

Dr =
E0

L
E

x=L−sE0−E−d/sgLd

L

expF− E0
x

L
Gdx

= expF− E0 + E0SE0 − E−

L2 DS1

g
DG − expf− E0g. s3d

We neglect the latter term. The eventual escape ratek will be

FIG. 4. sad A log-log plot for the mean first passage timet as a
function of the rate of the imposed fluctuationg. The amplitude of
the barrier height fluctuation is smalls15%d relative to the barrier
height itself scf. Fig. 3d. The four curves correspond to different
values ofdA. Exact values are given in the text.dA indicates the
distance to the bifurcation point. Each curve shows three distinct
plateaus for low, intermediate, and high frequency.sbd The loga-
rithm of the escape rate lnks=−ln td appears to linearly depend on
sdAd3/2 for low, intermediate, and high frequency, thus affirming the
3/2 critical exponent derived in this paper.
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proportional toDr. So with E~ sdAd3/2 and L~ sdAd1/2 we
derive

ln k < − l1sdAd3/2 + l2sdAd2g−1. s4d

Here l1 and l2 represent positive proportionality constants.
The method in the above paragraph becomes inaccurate for
large 1/g. This is because the change of the shape of the
distribution can no longer be neglected for larger dwelling
times. Numerically Eq.s4d turns out to be a poor fit to the
curves in Fig. 4sad. It follows the “drop-off” from the high-
frequency regime to the intermediate-frequency regime only
a very small part of the way.

However, Eq.s4d does have a few features that are worth
pointing out. It is obvious that for high values ofg, the
exponent 3/2 will dominate. Asg gets smaller and moves
toward 1/tadj, we move toward the intermediate-frequency
regime and the exponent 2 will become more significant. An
exponent 2 thus plays a brief role in the regime aroundg
<1/tadj, where the transition between high and intermediate
frequency takes place. Equations4d predicts the right propor-
tionality for tadj. Assume that the transition between the re-
gimes occurs atg=g* , when the two terms ins4d have some
fixed ratio. This leads tog* ~ sdAd1/2, which implies that
tadj~ sdAd−1/2. In other words, for a smaller well, the adjust-
ment time is larger; whendA is made smaller, the dynamics
slows down. This somewhat counterintuitive result was also
deduced by Dykman, Golding, and Ryvkinef5,6g. It has also
been derived thattadj equals the time it takes a particle to
slide down deterministically from the barrier top to the bot-
tom of the well f11,12g. In Fig. 3 it can be seen that for
decreasingdA, the force driving the particle to the bottom
s~dAd decreases faster than the width of wellf~sdAd1/2g. So
the downslide time is indeed proportional tosdAd−1/2.

It would be tempting but erroneous to identify the expo-
nent 2 in Eq.s4d with the exponent 2 that Dykman, Golding,
and Ryvkine derived as the dominant critical exponent in an
intermediate-frequency regime. ThesdAd2 that Dykman,
Golding, and Ryvkine derived does not carry theg−1 fre-
quency factor and, moreover, comes with a negative propor-
tionality constant.

IV. COMPARISON WITH NUMERICAL RESULTS

The two inflection points in each of the curves in Fig. 4sad
mark the transitions from low to intermediatesgL→Id and
from intermediate to highsgI→Hd frequency. The left inflec-
tion points correspond to the aforementioned escape time,
gL→I <1/tesc. From tesc~expfEg and E~ sdAd3/2 we get
log10 gL→I ~−log10sdAd. The minus in the latter formula cor-
rectly predicts that the left inflection point moves further left
for increasing values ofdA. The inflection points on the right
correspond to the escape rate’s adjustment time, i.e.,gI→H
<1/tadj. With tadj~ sdAd−1/2 we derive log10 gI→H

~ log10sdAd. This formula implies that the right inflection
point moves further right for increasingdA; a prediction that
is again borne out by Fig. 4sad. All in all, we see that for
dA→0, the mean first passage timet approaches zero and
the resonant activation regime narrows.

Figure 4sad shows log10 t vs log10 g for E0=20sdAd3/2,
DE=3sdAd3/2, andL=2sdAd1/2. From top to bottom, the four
curves correspond todA=0.8, dA=0.64,dA=0.512, anddA
=0.4096. The curves in Fig. 4sad were evaluated for an initial
condition atx=0 and the barrier having an equal probability
to be in eitherE+ or E−, i.e., P+st=0d=P−st=0d=1/2. Tech-
nically, a constant transition ratek only makes sense in case
of a stationary Boltzmann distribution. We therefore took our
parameter values such that the mean first passage timet is
larges.10d; much larger than the time it takes to establish a
Boltzmann distributionf12g. This means thatk=1/t, and
therefore lnk=−ln t, is a good approximation. Figure 4sbd
depicts lnk vs sdAd3/2 for low-, intermediate-, and high-
frequency plateaus. The data points are found to be on
straight lines, thus affirming the above-derived value of 3/2
for the critical exponent in all of the three regimes.

Next we takeE0=DE, i.e., a fluctuation between zero
height and a finite height. The above approach breaks down
becausetadj→` when the barrier height is zero. A rough
estimate of lnk in the intermediate-frequency regime can be
obtained as follows. IfE0+DE is sufficiently large, a Brown-
ian particle will be close to the reflecting barrier after adia-
batic adjustment when the barrier is up. When the barrier is
flat, the average time to diffuse the distanceL to the absorb-
ing end of the interval equals12L2. This corresponds to a rate
k<2L−2 when the barrier is down. WithL~ sdAd1/2, we ob-
tain for the averagek for the entire time-varying system:
ln k~−lnsdAd. Figure 5sad shows log10 t versus log10 g for
E0=DE=12sdAd3/2 and L=3sdAd1/2. The four curves again
correspond to dA=0.8, dA=0.64, dA=0.512, and dA
=0.4096. In this case, the 3/2 power law is still expected to
be valid for the low- and high-frequency plateaus. Figure
5sbd shows that this is indeed the case. For the intermediate-
frequency regime, Fig. 5scd shows that lnk no longer follows
a power law, but is, instead, proportional to the predicted
−lnsdAd.

V. DISCUSSION

We studied a piecewise linear barrier with an imposed
dichotomous fluctuation of the barrier height. There are three
distinguishable plateaus when we plot the logarithm of the
mean first passage time versus the logarithm of the imposed
fluctuation rate. We have seen, theoretically and numerically,
that the critical exponent equals 3/2 on each of these pla-
teaus as long as the minimal barrier height is still high
enough. Over the past decades, researchers have generally
operated with the guiding assumption that there are no fun-
damental qualitative differences between a piecewise linear
potential and an everywhere differentiable potential if the
setup involves diffusion. Diffusion is supposed to smooth
things out anyway. Also, the difference between a fluctuation
swith instantaneous flipsd and a smooth harmonic oscillation
was supposed not to be of major consequences in the pres-
ence of diffusion. But in this paper we have identified a
realm where piecewise linear and smooth profiles are very
distinct. It appears that they exhibit very different behavior
when it comes to their critical exponents.
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In their asymptotic analysis, Dykman, Golding, and
Ryvkine f5,6g follow the approach of the stable and the un-
stable pointsi.e.,xs1

andxu in Figs. 1 and 2d as the oscillation
is in progress. Imagine a particle at the midpointx* between
xs1

and xu in Fig. 2. Let F denote the force driving this
particle back toxs1

and lett= t* be the time during the oscil-
lation at whichxs1

and xu are closest. If the oscillation is
harmonic, we can expand around the point of closest ap-
proach as follows:

F = F0 + aq2 + b«2. s5d

Hereq= t− t* , «=x−x* , a andb are positive constants, and
F0 is a term proportional todA. Equations5d is at the center

of the analysis of Dykman, Golding, and Ryvkine, and the
quadratic approach inq and« is crucial. There is no equiva-
lent of Eq.s5d in our setup; fluctuation instead of oscillation
gets rid ofq2 and piecewise linearity does away with«2.

Our Eqs.s3d and s4d originate from a different line of
reasoning. The “2” exponent appears in the formula, but,
unlike Dykman, Golding, and Ryvkine, we do not find a
significant area in parameter space where the “2” power
dominates. Furthermore, the analysis of Dykman, Golding,
and Ryvkine still applies whenxs1

andxu are merged at the
extremum of the oscillationsi.e., F0=0d or even when the
slope of the potential is negative for a brief momentsi.e.,
F0,0d. In the system that we investigated, we find that
power laws break down when the minimum barrier height
goes to zero. When the minimum barrier height is zero in our
system, a simple approximation predicts that in the
intermediate-frequency regime lnk does not follow a power
law fi.e., ~−sdAd3/2g but, instead, exhibits a logarithmic de-
pendencefi.e., ~−lnsdAdg. Numerical observation agrees
with this approximation. The overall conclusion is that flips
and corners change the way in which a system responds to
parameter changes. The presence of diffusion does not take
away from this fact. Taking a finiteDE andE0=0, we have
also evaluated cases for our piecewise linear setup where the
minimum barrier height is negative. The resulting graphs are
not shown in this paper, but it appears that in such a situa-
tion, the intermediate-frequency regime exhibits neither a
power law nor a logarithmic law. No simple approximate law
can be observed or derived for this case.

The above theory describes setups where the barriers are
sufficiently low to allow for noise-induced escape, but also
sufficiently high above the noiseband to allow for the ap-
proximations we used. A great many protein-regulated reac-
tions have activation barriers between 5 and 10kBT, which is
precisely where the above theory applies. In such environ-
ments, oscillating or fluctuating electric fields or concentra-
tions can modulate the barrier height. As biophysicists are
dealing with smaller and smaller systems, critical exponents
may soon become a part of their experimental reality. The
critical exponents we derived could, furthermore, character-
ize the behavior of many bistable systems in the nanotech-
nological realm. Many circumstances are imaginable where
dA corresponds to a parameter that can be controlled. The
discussed escape corresponds to the system making a
“switch.” Noise-induced switches will become more com-
mon as technology pushes further into the molecular realm.
Critical exponents are important in characterizing “switching
behavior” and a good theoretical understanding of such ex-
ponents will be imperative.
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FIG. 5. sad A log-log plot of the mean first passage timet as a
function of the rate of the imposed fluctuationg when the linear
barrier of Fig. 3 fluctuates between a finite height and zero. The
four curves correspond to different values ofdA. dA indicates the
distance to the bifurcation point. Exact values for barrier height and
width are given in the text. Again each curve shows three distinct
plateaus for low, intermediate, and high frequency.sbd The loga-
rithm of the escape rate lnks=−ln td appears to linearly depend on
sdAd3/2 in the low- and high-frequency regimes.scd In the
intermediate-frequency, “resonant activation,” regime, lnk in-
creases linearly with −lndA.
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