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Critical exponents near a bifurcation point in noise-induced escape over a fluctuating barrier
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If a bistable system is brought closer to the bifurcation poilkaA,, the rate of noise-activated escape to
the other stable equilibrium increases a&in-|A-AJ%2 Recently, Dykman, Golding, and Ryvkine derived
that upon the addition of an oscillating force, the exponent equals 2 in an intermediate-frequency Réyisne
Rev. Lett. 92, 080602(2004); Phys. Rev. E69, 061102(2004]. In this paper we study the critical exponents
near a bifurcation point for an analytically solvable case; that of a piecewise linear well with an imposed
dichotomous fluctuation. It is shown how an exponent 2 emerges when a parameter is changed to move a
system from nonadiabaticity to adiabaticity. It is, furthermore, shown that the power law breaks down for low
barriers. Finally, it is explained why fundamental differences occur between smooth and piecewise linear
setups.
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[. INTRODUCTION rabola, i.e, there is a quadratic dependefngfla—xu)zocéA

Bistability is a frequently occurring phenomenon through-[cf. Fig. 1(@]. We thus have(xs —x,) = VéA. Figure 2a)
out nature. A huge body of literature has been devoted to thehows how the quadratic situation aroukdA, in the bifur-
theoretical study of bistability and many authoritative text-cation diagram translates into a cubic energy prdfiilee
books carry a chapter on this togit,2]. E(x) =-x3+x?] in the neighborhood aroumdsl andx,. The

Figure Xa) shows an arbitrary, generic bifurcation curve. force due to this profile equalB(x)=-(d/dx)E(x) and is
Along the vertical dotted line the energy profile looks like 5gain quadratiFig. 2(b)]. Obviously, the force driving a
Fig. 1(b): x5, andxs, are the stable fixed points, amglis the  paticle fromx, back toxs_is largest at the midpoint between

unstable fixed point. In order for the system to Cross ovey anqy  je., at the bottom of the parabola in FigbR For
from xs, to Xg, an activation barrier of heigh has to be 51

mounted. If the dotted line is brought further to the right, the
critical valueA, is approached. AA=A., the poin'[sxSl and Xs |
X, merge, and the system is no longer bistable. '

WhenA comes closer td\, i.e., A,—A=8A—0, the bar- A
rier can become sufficiently small for noise to be able to X ‘
induce a barrier crossing. Particularly in a microscopically S
small system, the barrier heigktmay be only a fewkgT’s 4
high (wherekg is the Boltzmann constant afdis the abso-
lute temperaturekgT is then the average amount of energy in \ :
Brownian motion. The escape rateover a barrier of height \
E follows the proportionalitykecexgd—E/kgT]. In the re- '
mainder of this paper, | will takkgT as the unit of energy, so
kecexd —E]. We will work in the overdamped realm and the (@)
diffusion coefficient will be scaled t&=1. Because of Ein-
stein’s fluctuation-dissipation theorem, i.8=kgT/D, this Energy
implies =1 for the coefficient of friction.

A bistable system that is miniaturized to a nanometer
scale is going to be more susceptible kgT-induced
switchovers. This actually sets a soon-to-be-reached limit to
the size to which computer hardware can be shifiik

In many contexts in which bistability occurs, researchers
have tried to derive and measure at what rate noise-induced
escape from a stable state occurs. Already in the 1970s, and
working in the context of Josephson junctions, Kurkijarvi
derived that a®®A— 0, the activation energy goes to zero as (b)

Eoc(ﬁA)alz [4]. This means that the noise-induced escape rate FIG. 1. (a) A generic bifurcation curve for a bistable system

k out of x5 follows In ke —(M)¥2. Below | will first show a  \yhere the solid part of the curve indicates a stable attractor and the
short, but general, derivation of this critical exponent of 3/2.dashed part of the curve indicates the unstable repelloA#%,

In a sufficiently small neighborhood around the bifurca-there is a bifurcation pointh) The energy profile along the dotted
tion point A=A, the bifurcation curve approaches a pa-vertical line of part(a).
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FIG. 3. A piecewise linear setup with one straight segment be-
Force tween a reflecting and an absorbing barrier. This profile mimics the
differentiable energy profile in Fig.(@). For this piecewise linear
profile, a Brownian particle’'s mean first passage timever the
)12 barrier can be analytically evaluated. Analytic evaluation is also

F=0 Xs1 " PA possible when the barrier fluctuates betw&srandE._.

(b) In the Iow—frequgncy regime_gscape over the barrier oc-
curs before there is any significant variation of the barrier
FIG. 2. () A part of the energy profile depicted in Figih. If ~ Profile. Let «(E) be the mean first passage time over a sta-
the bifurcation curve is quadratic in a neigborhood aroswds,,  tionary barrier of height. The eventual mean first passage
where A=|A-A] is small, then the distance between andx, is time 7 over the modulated barrier is obtained by averaging
proportional toy/(A), the height of the activation barrier is propor- the 7{E)'s over all barrier heights. In case of an oscillation
tional to (SA)¥2, and (b) the maximal force driving a particle to- We thus haver=(1/T)[Lyr(E)dte [, ex{E(t)]dt, whereT
wardsxs scales likesA. is the period of the oscillation. For a fluctuation between a
finite number of barrier heights we get:>;[exp(E;)]w;,

a quadratic profile, this maximum force is proportional toyvherewi represents the average fraction of time spent in the

SA. The energy that has to be overcome for a barrier crossinij? State.7 goes up exponentially with the barrier height
can be derived a&=-["“Fdx The area that is enclosed by a 0, generally7 will be dominated by the highest valuesBf
S.

1 ) i.e., 7= C exd Ead With C being a constank,,,,scales like
parabolaf(x) =bx’~a (wherea>0 andb>0) and thex axis (6A)%2. In 7 will therefore scale like( 5A)3/2, For the escape

runs fromx=-ya/b to x=a/b and equals &*%/(3b). Iden- ;10 \ye havé=1/7 (see Ref[7] for a rigorous derivation of
tifying a with SA, it |3?20bV|ous that_ the activation energy is this). We thus eventually still get lkec—(5A)32 in the low-
proportlona3I/2to(5A) . We thus find for the escape rate goq ency regime. This approximation applies when the
In ko =(6A)™, period T of the oscillation or fluctuation is much larger than
the escape timg.over the barrier at maximum height, i.e.,
T>tesc

When a potential well as in Fig.(@ changes shape, it

What if an oscillating or fluctuating force is added to the takes time for a population of Brownian particles to redis-
setup of Fig. 2?2 Such an addition leads to a varying height ofribute and attain a new Boltzmann equilibrium. So there is
the activation barrier. Dykman, Golding, and Ryvkine de-an “adjustment” timd,q; for the escape rate when the energy
rived that the critical exponent equals 3/2 in the limits of profile changes. Thiigh-frequency regimeccurs when the
high and low frequency. But, surprisingly, they found an in-imposed fluctuation or oscillation is so fast that the escape
termediate regime where the exponent equal$,8]. The rate out of the well can never adjust to the shape of the
derivation of Dykman, Golding, and Ryvkine involves a potential at a particular instant. Instead, the population of
mathematically intricate asymptotic analysis. Below | will Brownian particles will simply “feel” and adjust to the aver-
present simpler arguments in the context of a related setup. Age potential. We get=exp(E) and thus Irkoc—(8A)%/2 for
piecewise linear wellFig. 3) with a Markovian dichotomous the escape rate if <t,q;.
fluctuation allows for analytical derivation of the escape rate. The intermediate-frequency regimeccurs when the pe-
The two cases, i.e., piecewise linear with imposed fluctuatiomiod of the imposed oscillation or fluctuation is in between
(this papey, and smooth with imposed oscillatiofRefs.  the two characteristic time scalég;; and teg, i.€., tyg<T
[5,6]), exhibit a similar decrease of the escape rate when theltes, In the low-frequency regiméT>t.s) escape took
imposed modulation is speeded up from the adiabatic regimplace before any appreciable change in barrier height oc-
to the nonadiabatic regime. This is not surprising: introduccurred. We, therefore, had to integrate the escape time over
ing corners in systems with diffusion is generally of little the distribution of barrier heights to obtain the average es-
consequence as diffusion tends to “smooth out” cornerscape time. In the intermediate-frequency regime we face the
However, in later sections of this paper we will see thatreverse situation: the barrier height now changes much
fundamental differences arise between smooth and piecéaster than the escape tintg,, But the change of the
wise linear when it comes to the behavior of their critical barrier height is still slow enough for the system to remain
exponents. adiabatic. So eventually we have a variable escapek(&ie

Il. THE MODULATED BARRIER
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We obtain the average escape ratver the modulated bar- M-ﬂki 10g+6T

rier by integratingk(E) over the distribution of barrier

heights: k:(llT)fthok(t)dt. As kxexd-E], we have k A=0.64 —
m(l/T)fthoexF{—E(t)]dt. Because of the minus sign, it is _mf
now the minimum barrier height that will dominate. We thus $A=0.512

getk= C exd —E,,,] for the entire modulated system. It is in 5A=0.4096 2

this intermediate-frequency regime that the escape rate is = +

highest. Again we expect a critical exponent of 3/2. This logioY
result hinges orkxexd-E] and thus requires thd,,, is iy 4 2 o 2 .
larger than a fewkT. (@)

Ill. THE PIECEWISE LINEAR CASE

-0.8 -0.6 -0.4
Setups like the one in Fig(& can be well approximated -(8A)3/2

by a piecewise linear setup as in Fig. 3. The piecewise lin-
earity introduces corners. However, for problems involving
diffusion, the introduction of corners does not generally lead intermediate
to qualitatively different behavior. The setup of Fig. 3 allows
for the analytical evaluation of the mean first passage time
over the barrier for a particle that is ¥¥0 att=0. The mean
first passage time i8-10]

_eE—1—EL2 (b)

(1)
2
E FIG. 4. (a) A log-log plot for the mean first passage times a

A delta-function-like distribution ak=0 will rapidly evolve function of the rate of the imposed fluctuation The amplitude of
towards a Boltzmann equilibrium inside the well. It is only the barrier height fluctuation is smafl5%) relative to the barrier
with such a stationary equilibrium distribution inside the height itself (cf. Fig. 3. The four curves correspond to different
well that there is a constant escape fat&\ith an equilib- values of 5A. Exact values are given in the texdA indicates the
rium distribution inside the well the escape rate can be degistance to the bifurcation point. Each curve shows three distinct
. lateaus for low, intermediate, and high frequeny. The loga-
rived to be[11,12 P

rithm of the escape rate ki=—In 7) appears to linearly depend on

Ink _o

T

(= EX(1-€5 _, @ (5A)3’2_f_or low, intermediate, and high frequency, thus affirming the
TeE-2E-gE 3/2 critical exponent derived in this paper.
This formula also shows how ke<—E actually loses validity ~ Next we will study the transition from the nonadiabatic
whenE gets too close to unityi.e., whenE gets too close to  hjgh-frequency regime to the adiabatic intermediate-
the noiseband frequency regime. On the average potential we have for

To study the escape over a modulated barrier, we let ththe normalized probability distributionp(x)=(Eo/L)exp
barrier height fluctuate betweeB,=E,+AE and E_=Ey  [_Ex/L]. Here a small ternforder exf—E,]) in the normal-
—AE. In each of these two states there is a constantyate jzation factor has been neglected. For this Boltzmann distri-
the flipping rate, at which transition to the other state OCCUISption, the deterministic force towaras=0 is balanced out
So the average dwelling time in each state isn14s the 4 giffusive force towards=L. When the barrier flips
initial condition we again take=0 att=0, and an equal gown toE_, immediately after the fligbefore adiabatic ad-
distribution over the two barrier heights, i.&(E,)=P(E.) justmen}, there is a net force ofE,—E_)/L pushing the
=1/2 att=0. The resulting system still allows for analytical gniire Boltzmann distribution towards=L. Since the coef-
evaluation of the mean first passage timg8—10. Figure  ficient of friction 8 equals unity, the speed with which the

4(a) shows logo 7 as a function of log, y. The four curves gisyribution moves towards=L also equal$E,—E_)/L. The
are for different values of the parameté&s AE, andL (see average time in theE_ state equals L. If 1/ is short

below). Each of the four curves exhibits an intermediate-g,q,gh for the distribution not to change shape appreciably,
frequency plateauwhere tyy<1/y<tes) where the mean o fraction of the distribution betweenx=L-(E,

first passage timeis minimal. In 1993, Doering and Gadoua —E)/(yL) and x=L will be “pushed over the edge,” i.e
discovered this plateau and they termed the enhanced esca&x&‘orbed ak=L We call this fractionAn and we find T
“resonant activation]9]. In the resonant activation regime, ' P

the Brownian particles in the well can actually “take advan- Eo (" X

tage” of an oscillation or fluctuation. In the high- or low- Ap= ff expl - Eo[ dx

frequency regime, escape is equally likely overEhendE_ x=L-(Bp~E /(L)

barrier. But at resonant activation, the dwelling time is short Eo—E_\(1

enough so no escape occurs from the well and long =ex ‘Eo+Eo<T>(—> —exgd-Eol. (3)
enough for adjustment to occur on tBe profile and have an 4

enhanced escape rate for some time. We neglect the latter term. The eventual escapekrat# be
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proportional toAp. So with Ex(8A)%2 and Lo (5A)Y2 we Figure 4a) shows logy 7 vs logyy for Ey=20(8A)%2,
derive AE=3(8A)%?, andL=2(5A)"2. From top to bottom, the four
_ curves correspond t6A=0.8, 6A=0.64, 5A=0.512, andsA
In k= = \g(8A)¥2+ Na(6A) 2y 4 =0.4096. The curves in Fig(d) were evaluated for an initial
Here\; and\, represent positive proportionality constants. condition atx=0 and the barrier having an equal probability
The method in the above paragraph becomes inaccurate fé® be in eitherE, or E_, i.e., P,(t=0)=P_(t=0)=1/2. Tech-
large 1/y. This is because the change of the shape of thaically, a constant transition rateonly makes sense in case
distribution can no longer be neglected for larger dwellingof a stationary Boltzmann distribution. We therefore took our
times. Numerically Eq(4) turns out to be a poor fit to the parameter values such that the mean first passageiisie
curves in Fig. 4a). It follows the “drop-off” from the high- large(>10); much larger than the time it takes to establish a
frequency regime to the intermediate-frequency regime onlyoltzmann distribution[12]. This means thak=1/7, and
a very small part of the way. therefore Irkk=-In 7, is a good approximation. Figure}
However, Eq(4) does have a few features that are worthdepicts Ink vs (5A)*? for low-, intermediate-, and high-
pointing out. It is obvious that for high values of the frequency plateaus. The data points are found to be on
exponent 3/2 will dominate. Ay gets smaller and moves straight lines, thus affirming the above-derived value of 3/2
toward 1t,q4, we move toward the intermediate-frequency for the critical exponent in all of the three regimes.
regime and the exponent 2 will become more significant. An  Next we takeEy=AE, i.e., a fluctuation between zero
exponent 2 thus plays a brief role in the regime arognd height and a finite height. The above approach breaks down
~ 1/t,q;, where the transition between high and intermediatébecauset,qj— > when the barrier height is zero. A rough
frequency takes place. Equatieh predicts the right propor- estimate of Irk in the intermediate-frequency regime can be
tionality for t,q;. Assume that the transition between the re-obtained as follows. IE,+AE is sufficiently large, a Brown-
gimes occurs ay=v', when the two terms if4) have some ian particle will be close to the reflecting barrier after adia-
fixed ratio. This leads toy" o« (8A)Y2, which implies that batic adjustment when the barrier is up. When the barrier is
tadjoc((SA)‘l’Z. In other words, for a smaller well, the adjust- flat, the average time to diffuse the distaric® the absorb-
ment time is larger; whedA is made smaller, the dynamics ing end of the interval equa@.z. This corresponds to a rate
slows down. This somewhat counterintuitive result was als&=2L~2 when the barrier is down. With o (5A)Y2, we ob-
deduced by Dykman, Golding, and Ryvkif6]. It has also tain for the average for the entire time-varying system:
been derived that,q; equals the time it takes a particle to In k<-In(6A). Figure %a) shows log, 7 versus logy y for
slide down deterministically from the barrier top to the bot- E;=AE=12(5A)%? and L=3(6A)2. The four curves again
tom of the well[11,12. In Fig. 3 it can be seen that for correspond to SA=0.8, SA=0.64, SA=0.512, and A
decreasingsA, the force driving the particle to the bottom =0.4096. In this case, the 3/2 power law is still expected to
(=5A) decreases faster than the width of wiel(5A)Y2]. So  pe valid for the low- and high-frequency plateaus. Figure
the downslide time is indeed proportional (@A) /2. 5(b) shows that this is indeed the case. For the intermediate-
It would be tempting but erroneous to identify the expo-frequency regime, Fig.(6) shows that Irk no longer follows
nent 2 in Eq.(4) with the exponent 2 that Dykman, Golding, a power law, but is, instead, proportional to the predicted
and Ryvkine derived as the dominant critical exponent in an-In(5A).
intermediate-frequency regime. ThgA)? that Dykman,
Golding, and Ryvkine derived does not carry the* fre-
guency factor and, moreover, comes with a negative propor- V. DISCUSSION

tionality constant. ) ) ) ) ) ) )
We studied a piecewise linear barrier with an imposed

dichotomous fluctuation of the barrier height. There are three
IV. COMPARISON WITH NUMERICAL RESULTS distinguishable plateaus when we plot the logarithm of the
] ) o S mean first passage time versus the logarithm of the imposed
The two inflection points in each of the curves in Figa4  fyctuation rate. We have seen, theoretically and numerically,
mark the transitions from low to intermediate, ;) and  hat the critical exponent equals 3/2 on each of these pla-
from intermediate to higlty, ) frequency. The left inflec-  tequs as long as the minimal barrier height is still high
tion points correspond to the aforementioned escape timenough. Over the past decades, researchers have generally
V1= 1ltese From tesxexgE] and Ex(5A)¥2 we get  operated with the guiding assumption that there are no fun-
log; L1 < —log;o(6A). The minus in the latter formula cor- damental qualitative differences between a piecewise linear
rectly predicts that the left inflection point moves further left potential and an everywhere differentiable potential if the
for increasing values ofA. The inflection points on the right setup involves diffusion. Diffusion is supposed to smooth
correspond to the escape rate's adjustment time, e,  things out anyway. Also, the difference between a fluctuation
~1ltyy. With t,q= (A2 we derive logoy . (with instantaneous flipsand a smooth harmonic oscillation
log;o(6A). This formula implies that the right inflection was supposed not to be of major consequences in the pres-
point moves further right for increasingf\; a prediction that ence of diffusion. But in this paper we have identified a
is again borne out by Fig.(d). All in all, we see that for realm where piecewise linear and smooth profiles are very
SA— 0, the mean first passage timeapproaches zero and distinct. It appears that they exhibit very different behavior
the resonant activation regime narrows. when it comes to their critical exponents.
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of the analysis of Dykman, Golding, and Ryvkine, and the
quadratic approach ift ande is crucial. There is no equiva-
lent of Eq.(5) in our setup; fluctuation instead of oscillation
gets rid of 9 and piecewise linearity does away with.

Our Egs.(3) and (4) originate from a different line of
reasoning. The “2” exponent appears in the formula, but,
unlike Dykman, Golding, and Ryvkine, we do not find a
significant area in parameter space where the “2” power
dominates. Furthermore, the analysis of Dykman, Golding,
and Ryvkine still applies whemSl andx, are merged at the
extremum of the oscillatiorfi.e., F;=0) or even when the
slope of the potential is negative for a brief moméng.,
Fo<0). In the system that we investigated, we find that
power laws break down when the minimum barrier height
goes to zero. When the minimum barrier height is zero in our
system, a simple approximation predicts that in the
intermediate-frequency regime kndoes not follow a power

,(5A)3/2
-1 -0.8 -0.6 -0.4

high freq. s

s law [i.e., <—(8A)%?] but, instead, exhibits a logarithmic de-
Ink pendencelfi.e., «=In(8A)]. Numerical observation agrees
with this approximation. The overall conclusion is that flips
() and corners change the way in which a system responds to
1.abink parameter changes. The presence of diffusion does not take
imeffmediate away from this fact. Taking a finitdE and E,=0, we have
-1.6 rea: also evaluated cases for our piecewise linear setup where the
-1.8 minimum barrier height is negative. The resulting graphs are
In(3A) not shown in this paper, but it appears that in such a situa-
22 0.2 06 08 ! tion, the intermediate-frequency regime exhibits neither a
power law nor a logarithmic law. No simple approximate law
24 can be observed or derived for this case.
2.6 The above theory describes setups where the barriers are
(© sufficiently low to allow for noise-induced escape, but also

sufficiently high above the noiseband to allow for the ap-

function of the rate of the imposed fluctuatignwhen the linear prOXImatlonS \.Ne gsed. A_great many proteln—regula_lteq reac-
barrier of Fig. 3 fluctuates between a finite height and zero. Thé'ons_ have activation barriers between 5.and<g,'0, which 'S,
four curves correspond to different values &. SA indicates the Precisely where the above theory applies. In such environ-
distance to the bifurcation point. Exact values for barrier height andnents, oscillating or fluctuating electric fields or concentra-
width are given in the text. Again each curve shows three distinctions can modulate the barrier height. As biophysicists are
plateaus for low, intermediate, and high frequendy. The loga-  dealing with smaller and smaller systems, critical exponents
rithm of the escape rate ki=—In ) appears to linearly depend on may soon become a part of their experimental reality. The
(6A)%2 in the low- and high-frequency regimedc) In the  critical exponents we derived could, furthermore, character-
intermediate-frequency, “resonant activation,” regimek lin- ize the behavior of many bistable systems in the nanotech-
creases linearly with ~I6A. nological realm. Many circumstances are imaginable where
OA corresponds to a parameter that can be controlled. The
In their asymptotic analysis, Dykman, Golding, anddiscussed escape corresponds to the system making a
Ryvkine[5,6] follow the approach of the stable and the un-“switch.” Noise-induced switches will become more com-
stable pointi.e.,xs andx, in Figs. 1 and 2as the oscillation  mon as technology pushes further into the molecular realm.
is in progress. Imagine a particle at the midpoinbetween  Critical exponents are important in characterizing “switching
Xs, and x, in Fig. 2. LetF denote the force driving this behavior” and a good theoretical understanding of such ex-
particle back ta and lett=t. be the time during the oscil- ponents will be imperative.
lation at WhichxSl and x, are closest. If the oscillation is

harmonic, we can expand around the point of closest ap-
proach as follows: ACKNOWLEDGMENTS
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FIG. 5. (a) A log-log plot of the mean first passage times a
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